
A Script-Based Approach to Modifying Knowledge Bases

Yolanda Gil and Marcelo Tallis
Information Sciences Institute

University of Southern California
Marina del Rey, CA 90292

gil@isi.edu, tallis@isi.edu

Abstract

Our goal is to build knowledge acquisition tools
that support users in modifying knowledge-based
systems. These modi�cations may require sev-
eral individual changes to various components
of the knowledge base, which need to be care-
fully coordinated to prevent users from leaving
the knowledge-based system in an unusable state.
This paper describes an approach to building
knowledge acquisition tools which capture knowl-
edge about commonly occurring modi�cation se-
quences and support users in completing the
modi�cations they start. These sequences, which
we call KA Scripts, relate individual changes
and the e�ects that they have on the knowl-
edge base. We discuss our experience in design-
ing and compiling a library of KA Scripts. We
also describe the implementation of a tool that
uses them and our preliminary evaluations that
demonstrate their usability.

Introduction

The maintenance of knowledge-based systems remains
a largely unresolved problem after more than twenty
years of research and practical experience in building
knowledge-based systems. After initial prototypes are
developed, subsequent modi�cations are usually made
to detail and extend the knowledge base. Once the
system is �elded, it would be extremely rare if the
knowledge-based system did not need to be maintained
to adapt to the changes that naturally happen in the
world in which it works or to new requirements from
its users. The problem of modifying a knowledge-based
system is arbitrarily hard. Some modi�cations may
involve complex restructuring or the introduction of
large new portions that may be equivalent to the ef-
fort of building a whole new knowledge base. Providing
support for these kinds of modi�cations will be very
hard. But we should still be able to support modi�ca-
tions that change some aspect of the reasoning or add
new simple steps.

1Copyright c1997, American Association for Arti�cial
Intelligence (www.aaai.org). All rights reserved.

Research in the area of knowledge acquisition only
partially addresses the issue. Some tools allow users
to populate a knowledge base with domain knowledge
(Marcus and McDermott 1989; Eriksson et al. 1995;
Puerta et al. 1992; Runkel & Birmingham 1993).
The kinds of changes that a user can make is lim-
ited to �lling in the knowledge roles determined by
a prede�ned problem-solving method that the sys-
tem uses. For example, in a con�guration system the
user could de�ne new components but would not be
able to change the con�guration method to prefer cer-
tain con�gurations (e.g., cheaper ones). More auto-
mated approaches for building knowledge-based sys-
tems use machine learning and theory revision tech-
niques (Langley & Simon 1995; Pazzani & Brunk 1991;
Ourston & Mooney 1994). However, they can only
be used for some types of problems (e.g., classi�cation
tasks). Other systems (Murray 1996) can assist users
in �xing the inconsistencies caused by the addition of
the new knowledge to a knowledge base, but without
a problem-solving context in which the knowledge is
used. Modifying a knowledge-based system requires a
coherent sequence of several individual changes to def-
initions, facts, and methods that together compose the
system. There is a need for tools that support users
in coordinating these changes and carrying them out
correctly.

We begin by describing the di�culties involved in
supporting users as they modify knowledge-based sys-
tems. Then we discuss our approach and our initial im-
plementation of a script-based tool that supports users
in modifying a knowledge-based system. Our scripts
represent typical sequences of changes that users can
apply in order to complete modi�cations. Finally, we
present the results of an evaluation that we conducted
with several users and discuss the value of this ap-
proach and our plans for future work. Although this
research is tied to our work within a particular frame-
work for building knowledge-based systems, the prob-
lems addressed are described with enough generality
that other researchers can bene�t from our work. The
paper also describes the speci�c features of this frame-
work that we found useful to support script-based ap-



proaches to knowledge acquisition.

Why Modifying Knowledge Bases is
Hard

Consider an example from our experience with a
knowledge-based system for transportation planning.
Suppose that the system calculates durations of trips
involving only ships, and that now it has to be ex-
tended to consider aircraft too. This modi�cation to
the knowledge base involves several individual changes.
First, existing knowledge may need to be modi�ed.
The description of vehicles (which may be represented
as a concept with attributes or roles) has to be ex-
tended to include aircraft in addition to ships. The
procedures (which may be represented for example
with rules) to calculate round trip time need to be
changed to take into account aircraft. New knowledge
may also need to be added. For example, new proce-
dures to calculate the round trip time of aircraft need
to be added. In all these modi�cations, any new knowl-
edge needs to be integrated with existing knowledge.
The distance traveled is used in the new procedure for
the round trip time of aircraft and it is also used in the
already existing calculation for the round trip time of
ships, so we need to make sure that they use consistent
estimates of the distance.
Notice that if the user makes only some of these

changes the knowledge base will be left in an incoher-
ent state that will render it unusable because the sys-
tem will not be able to solve problems. For example,
suppose that the description of vehicles is extended to
include aircraft but that no procedures to calculate the
round trip time of aircraft are added. The system will
no longer be able to estimate the duration of trips be-
cause it could not compute the round trip time of its
aircraft. Because several changes are required to dif-
ferent pieces of the knowledge base, users can easily
overlook some part of the overall modi�cation and end
up with an incoherent knowledge base. There are sev-
eral reasons why it is hard for a user to complete the
modi�cation:

� Separate pieces of knowledge: The knowl-
edge base is composed of many individual pieces
of knowledge that come together during the rea-
soning, and it is hard to follow up on all of their
interactions. We cannot use the unloading time of
an aircraft in a procedure if we have not added a
de�nition of what it is and speci�ed its value for
the di�erent aircraft types.

� Maintaining compatibility of types: The ar-
guments of expressions and the types of their re-
sults need to be compatible with how they are
invoked and used. If speeds are speci�ed in miles
per hour then stopover times cannot be de�ned as
a number because unless the system knows what
units we used to measure these times it will not
be able to add these quantities together correctly.

� Automatic inferences not directly observ-
able: The interactions occur in the results of
system-made inferences which are not directly ob-
servable to the user, such as class inheritance.

� Propagation of interdependencies: Modi�ca-
tions to a piece of knowledge may a�ect other com-
ponents of the knowledge base and as a result re-
quire additional modi�cations. Furthermore, each
of these additional modi�cations can in turn orig-
inate the need for additional changes. It is hard
for a user to track down and to keep in mind all
the modi�cations that are pending.
In sum, modifying a knowledge-based system often

requires several individual changes to various individ-
ual components of di�erent nature that need to be
carefully coordinated. A good starting point is to
build knowledge acquisition tools that �nd problems
with the knowledge base and alert users about them,
and in fact, this is pretty much the kind of support
that a conventional compiler provides to programmers
when they change their code. But helping users notice
the problems only partially addresses the issue. Ide-
ally, our tools should also support the user in resolving
these problems by making suggestions about what ad-
ditional changes may be needed in the knowledge base.
To do so, the tool needs to have more context and some
knowledge about the task that the user is trying to ac-
complish.

Our Approach: KA Scripts
Our approach is to equip knowledge acquisition tools
with scripts that group many individual changes to
represent how overall modi�cations are accomplished.
A Knowledge Acquisition Script (or KA Script) is a
prototypical sequence of changes together with the
conditions that make it relevant given the previous
changes to a knowledge base. An example of a KA
Script is the creation of a new procedure that is simi-
lar to an existing one. It could be used to create the
procedure that computes the round trip time of an
aircraft based on the one for ships. The role of the
knowledge acquisition tool is to help the user to resolve
side-e�ects of changes already made and complete the
modi�cation that he or she has started. To provide
this kind of support, a KA tool needs to have access
to the following kinds of information:

� problems with the current knowledge base,
which are indicative of what additional knowledge
needs to be acquired from the user. For example
the fact that the system is unable to calculate the
round trip time of an aircraft indicates that the tool
needs to acquire some procedural knowledge to cal-
culate it. These problems are side-e�ects of previ-
ous changes. Possible problems with the knowledge
base include errors (something it knows about is
wrong) and knowledge gaps (something is missing).
There may also be potential problems that need to
be brought to the user's attention. We will refer to



all these as errors throughout the rest of the paper.
The tool needs to be able not only to detect errors,
but also to identify the problem-solving context in
which they arise.

� a history of the changes made to the knowl-
edge base to understand what the user has been
trying to accomplish with the modi�cation. If the
tool is aware that the user has just changed a pro-
cedure to add two new calculations and there are no
existing procedures to calculate them, then it can
have the expectation that the user will de�ne these
procedures (and vice versa). Without this knowl-
edge of the user's past changes the system would
have a very myopic view of what is happening and
suggest to the user to change the procedure back to
the way it was. This would certainly accomplish the
goal of taking the knowledge base back to a coher-
ent state, but would not help the user make progress
towards his or her goals.

� a record of past versions of the knowledge
base to understand how the individual pieces of
knowledge are supposed to come together. Suppose
that the user initiates a modi�cation that changes
the arguments of some procedure and as a result the
system cannot invoke it any longer. The system can
use the past versions of the knowledge base to �gure
out which other procedures need to invoke it and
how, and use this to help the user in completing the
modi�cation by updating those procedures.

For each problem in the knowledge base there may
be several KA Scripts capable of �xing it. The knowl-
edge acquisition tool can suggest which KA Scripts can
be applied, but only the user has enough knowledge to
decide which one is appropriate given the modi�cation
that he or she has in mind.
Figure 1 shows one of our KA Scripts, which we will

explain in more detail in the next section. The error
speci�ed in a KA Script is a kind of problem that can
appear in the knowledge base and makes the KA Script
applicable. These errors can be detected automatically
by analyzing whether the system can solve a speci�c
task (e.g., calculating roundtrip time). The applica-
bility conditions describe conditions (other than the
error) that make the KA Script relevant to the situa-
tion. A short description and an explanation are used
to show users what the KA Script will do if they choose
to use it, and why it is being suggested by the system.
In designing KA Scripts, we took into account the

following requirements to address their usability:

� They need to be at the right level of generality in
the advice provided. A suggestion such as \Con-
sider creating a new procedure for achieving the un-
matched goal" is like to be less useful to the user
than \Consider generalizing the procedure to calcu-
late the round trip time for ships so it can be used for
all vehicles". This does not mean that the KA Script
needs to be described in great detail and in fact they

KA Script to resolve error type "Goal G-new cannot be matched"

Applicable when:
(a) A change has caused an argument A of a goal G to

become more general, resulting in goal G-new
(b) Goal G was achieved by method M before A changed
(c) G-new can be decomposed into disjunctive subgoals G1 G2
(d) G1 is the same as G

Modi�cation sequence:
CHOICE 1: Create new method M-new based on existing method
(1) System proposes M as the existing method to be used

as a basis. User chooses M or another method.
(2) System proposes a draft version of M-new that modi�es

A to match G2. User can make any additional
substitutions needed in the body of M-new.

(3) User edits body of M-new if modi�cations other than
substitutions are needed.

CHOICE 2: Create new method M-new from scratch

Description of what this KA Script does:
Create a method that achieves goal G2 based on method M

Reasons why it is relevant to the current situation:
Method M was used before to achieve goal G, which was
generalized to become the unmatched goal G-new. Now
M can be used to achieve one of the subgoals in the
decomposition of G-new. M may be used to create a new method
that achieves the other subgoal in this decomposition.

Figure 1: A KA Script from our library.

are often more understandable when described in an
abstract way.

� They need to be integrated with some basic knowl-
edge acquisition tool and degrade gracefully, so that
if no KA Script applies to the current situation (or
the user does not want to use any of the applica-
ble ones) then the user can still continue making
changes. Since it is unlikely that we can design KA
Scripts for all possible strategies that users can fol-
low in changing a knowledge base, it would be too
restrictive to force users to use KA Scripts only.

� They need to be structured to prioritize errors and
to sequence pending changes in a way that makes
the user's job easier. The errors can be prioritized
because the process of �xing one error will often �x
other errors. The changes need to be ordered so
that they are presented to the user in a logical se-
quence that is easy to follow and understand, instead
of jumping around several �xes, which can interrupt
the ow continuously and make the user lose the
thread of what he or she was doing. We also no-
ticed that often the way a user makes a change sheds
some light on how he or she may go about making
other changes. So it is preferable to place earlier any
changes that can be analyzed to guide subsequent
changes. At the same time, many temporary errors
can appear during a modi�cation sequence and it is
preferable that the user follows the chosen KA Script
and does not interrup it to �x another error.

To create our library of KA Scripts, we �rst did a
thorough analysis of the kinds of general changes and
types of errors that could arise in using our baseline



knowledge acquisition tool. This analysis was done sys-
tematically by evaluating the e�ects of modifying every
constituent in the grammar used to represent knowl-
edge in our framework. The result of this analysis was
the identi�cation of all the possible error types and a
set of KA Scripts for �xing them. These KA Scripts
cover all the situations in which a user can get when
modifying a knowledge base. However, our initial im-
plementation showed that the guidance they provide
to users is very vague. The main problem is that they
are very general and as a result they do not make good
use of the context available like previous modi�cations
to the knowledge base or of its speci�c contents.

We then analyzed several hypothetical (yet plausi-
ble) scenarios for modifying a knowledge base. We
looked at the changes that needed to be made, the
errors that resulted from them, and how subsequent
changes repaired the errors caused by earlier changes.
We analyzed what kinds of advice would have been
useful to users at each point, and determined what in-
formation from the context was needed to generate the
advice automatically. The result of this e�ort was a set
of KA Scripts that, though incomplete, were more spe-
ci�c to the context and as a result provided more help
to a user.
Finally, KA Scripts produced by both methods were

combined in a a single library. There is always some
general KA Script in the library that applies to any
situation. In situations where there is a more speci�c
KA Script that applies, the guidance provided will be
more speci�c to the context and more helpful. If not,
we can fall-back on the general KA Scripts because
they cover all situations and provide more generic (but
still helpful) guidance. The result of this e�ort is a
library of 75 KA Scripts that altogether address 23
types of errors in the knowledge base.
Several interesting issues came up in constructing

the KA Script library. Initially we tried to organize
KA Scripts by triggering them by user changes instead
of errors. This produced scripts that were very cum-
bersome, mostly because potentially any other script
was applicable at many points and it was hard to �nd
a reasonable subset. Another approach that was not
successful was to invoke scripts within a script. This
produced a high degree of nesting and it would have
been hard for users to follow what was happening. We
also realized that KA Scripts could not only remind
users of the changes that remain to be done but be
useful checklists to help them keep track of the changes
that they had already done.
KA Scripts are designed to be invoked after a user

has performed some initial changes to the knowledge
base. However, if the user makes an arbitrary number
of changes and then turns to KA Scripts, it is hard to
�gure out how all the changes relate and provide help-
ful guidance. We assume a paradigm where the system
starts with a coherent knowledge base (one that has no
errors and can be used for problem solving), then the

user makes a few changes (ideally just one) and invokes
the tool, which uses KA Scripts to help the user bring
the knowledge base back to a coherent state. Using
an analogy with databases, we can view the process of
modifying the knowledge base as a sequence of trans-
actions, where KA Scripts support users by enforcing
that transactions are completed so that the knowledge
base is not left incoherent.

ETM: EXPECT's Transaction Manager

Our implementation of a script-based knowledge ac-
quisition tool is ETM (EXPECT's Transaction Man-
ager), a tool integrated with the EXPECT architecture
for knowledge acquisition. We introduce some aspects
of EXPECT as we present an example knowledge base
and how ETM uses KA Scripts to guide users in mod-
ifying it. More details about EXPECT can be found
in (Gil & Melz 1996; Swartout & Gil 1995; Gil 1994;
Gil & Paris 1994).
EXPECT's knowledge bases contain factual domain

knowledge and problem solving knowledge. The fac-
tual domain knowledge represents concepts, instances,
relations, and the constraints among them. It is repre-
sented in Loom (MacGregor 1991), a knowledge repre-
sentation system of the KL-ONE family. Problem solv-
ing methods are procedural descriptions for achieving
goals. They consist of 1) a capability that represents
the goal that the method can achieve, expressed with
an action name and several parameters, 2) a method
body that describes the procedure for achieving the
method goal in the capability, and 3) a result type
that speci�es the type returned after elaborating the
method body. Figure 2 shows examples from a simpli-
�ed transportation domain. A vehicle is de�ned as a
kind of major equipment that has a speed and can be
either a ship or an aircraft. The method M2 speci�es
that in order to calculate the duration of a trip by ship
from a location to another location we have to �nd the
sailing distance between the locations and divide it by
the speed of the ship.
EXPECT can be given general goals, such as

(calculate (obj (spec-of TRIP-DURATION)) (of

(inst-of TRANSPORTATION-MOVEMENT))). General goals
represent the kinds of goals that the system will be
given for execution. EXPECT analyzes how to achieve
these goals with the available knowledge. EXPECT ex-
pands a goal by matching it with a method and then
expanding the subgoals in the method body. This pro-
cess is iterated for each of the subgoals and is recorded
as a derivation tree. Throughout this process, EX-
PECT propagates the types of the arguments perform-
ing an elaborate form of partial evaluation supported
by Loom's reasoning capabilities. Using the derivation
tree, EXPECT �nds the interdependencies between
the domain facts and the problem-solving methods,
which are used by the knowledge acquisition tool to
detect errors or knowledge gaps in the knowledge base
and guide the user in resolving them. For example,



(defconcept VEHICLE
:is-primitive (:and MAJOR-EQUIPMENT

(:the HAS-SPEED SPEED)
:disjoint-covering (SHIP AIRCRAFT))

(defconcept TRANSPORTATION-MOVEMENT
:is-primitive (:and TRANSPORTATION-DOMAIN-CONCEPT

(:the HAS-ORIGIN LOCATION)
(:the HAS-DESTINATION LOCATION)
(:the HAS-VOLUME-TO-MOVE TONS)
(:some HAS-AVAILABLE-LIFT SHIP)))

(def-expect-method M1
(capability (calculate (obj (?t is (spec-of TRIP-DURATION)))

(of (?m is (inst-of TRANSPORTATION-MOVEMENT)))))
(result-type (inst-of ELAPSED-TIME))
(body (pick (obj (spec-of MAXIMUM))

(of (calculate (obj ?t)
(by (HAS-AVAILABLE-LIFT ?m))
(from (HAS-ORIGIN ?m))
(to (HAS-DESTINATION ?m)))))))

(def-expect-method M2
(capability (calculate (obj (?t is (spec-of TRIP-DURATION)))

(by (?s is (inst-of SHIP)))
(from (?l1 is (inst-of LOCATION)))
(to (?l2 is (inst-of LOCATION)))))

(result-type (inst-of ELAPSED-TIME))
(body (divide (obj (�nd (obj (spec-of SAILING-DISTANCE))

(from ?l1)
(to ?l2)))

(by (HAS-SPEED ?s)))))

(def-expect-method M3
(capability (�nd (obj (?d is (spec-of SAILING-DISTANCE)))

(from (?l1 is (inst-of LOCATION)))
(to (?l2 is (inst-of LOCATION)))))

(result-type (inst-of LENGTH))
(body (if (or (unknown (obj ?l1)) (unknown (obj ?l2)))

then (ask-user (obj SAILING-DISTANCE) (from ?l1) (to ?l2))
else (look-up (obj (append ?l1 ?l2))

(in SAILING-DISTANCES-TABLE)))))

Figure 2: Some de�nitions of concepts and problem
solving methods in a simpli�ed transportation domain.

the derivation tree will annotate that in expanding M2
the speed of a ship is used. If a new ship is entered in
the knowledge base and its speed is unknown, this will
cause an error and the knowledge acquisition tool will
ask the user to specify the speed. Other kinds of errors
include goals that cannot be matched by any method,
unde�ned parameter types, and method result types
that are incompatible with what the method expan-
sion actually returns.

Now suppose that the knowledge base in Figure 2
needs to be modi�ed because the lift available for trans-
portation movements is no longer only ships but can
be any kind of vehicle. The available lift of a trans-
portation movement needs to be changed from SHIP to
VEHICLE. This causes an error because some instantia-
tions of the calculate subgoal of M1 have no method
matching them (the second parameter has changed
to be of type VEHICLE). The user then de�nes a new
method M2-PRIME based on M2 by substituting SHIP

by AIRCRAFT and SAILING-DISTANCE by FLYING-DISTANCE

and then adding the subgoal calculate to the method
body to calculate the time spent in stopovers. These

Figure 3: ETM's User Interface.

modi�cations now cause two additional errors: that the
find and calculate subgoals of M2-PRIME cannot be
matched. The user de�nes a new method M3-PRIME
based on M3 to resolve the former, and writes a new
method M4 for the latter. In summary, this overall
modi�cation required �ve individual changes to di�er-
ent parts of the knowledge base.
The KA Script shown in the Figure 1 is relevant

when the �rst error arises in our example scenario. In
this case, the goal to calculate a trip duration by ship
(G) was generalized to calculate the duration by a ve-
hicle (G-new). This new goal can be decomposed into
the disjunctive subgoals calculate the duration for a
ship and calculate the duration for an aircraft (G1 and
G2, where G1 is the same as G). Since M2 was the
method used to match the original goal, the KA Script
proposes to create a new method based on M2. Figure
3 shows ETM's user interface when executing this KA
Script. The current implementation has ten of the KA
Scripts in our library, enough to support the test sce-
narios described in the next section. We are extending
the system to include additional ones.
An important issue is the coordination of the execu-

tion of KA Scripts. We use a collaborative framework,
where ETM �nds the errors in the knowledge base and
the KA Scripts that are relevant and the user decides
which KA Script is most appropriate for the modi�ca-
tion he or she has in mind. The overall control loop



for the execution of KA Scripts in ETM is as follows:

User makes change(s) in the knowledge base
ETM identi�es errors in the knowledge base
While there are errors in the knowledge base

ETM picks error e to be �xed and generates
set K of KA Script candidates k that can �x e

If the user does not choose any k
then user can quit ETM and �x e with EXPECT,

ETM can be invoked again anytime
else user chooses one k from the set K,

ETM helps user to apply k
ETM identi�es errors in the knowledge base

Detecting which KA Scripts are applicable (includ-
ing often several instantiations of a same KA Script)
is a task that can be done automatically. At any given
time, there can be many errors in the knowledge base
and several KA Scripts may apply for each error. ETM
guides the user by suggesting KA Scripts that will re-
solve errors that occur earlier during problem solving.
When several KA Scripts are applicable for the same
error, we leave the choice up to the user, since the ap-
propriateness of a choice may depend on information
that is not readily available to the tool (e.g., user's
preferred strategy to modify knowledge bases).

Preliminary Evaluations

We conducted some preliminary evaluations of our
work by comparing the performance of several subjects
using EXPECT and ETM with two di�erent scenarios
that required modifying a knowledge base. Both sce-
narios used the same knowledge base (from a simpli-
�ed transportation domain), one of them (PAE) was
slightly more complex than the other one (RTT). The
scenarios and tools were used by the subjects in dif-
ferent order so that the results were not inuenced by
tiredness or increased familiarity with the domain. All
of our users were familiar with EXPECT (but not with
ETM), and had some previous exposure to the trans-
portation domain. The subjects were �rst given some
introductory material about the tools, the domain, and
the kind of task to be done and were given a chance
to practice using both tools. The experiment took sev-
eral hours for each of the subjects, and we took de-
tailed transcripts of what they were doing during that
time. We also instrumented the tools to record the
user's interactions, the errors in the knowledge base,
and the time between each modi�cation. The table
below shows some results of these evaluations.

RTT scenario PAE scenario
EXPECT ETM EXPECT ETM
S4 S1 S2 S3 S2 S3 S1 S4

Total time (min) 25 22 19 15 74 53 40 41
Time completing 16 11 9 9 53 32 17 20

transaction
Total changes 3 3 3 3 7 8 10 9
Changes made n/a n/a 2 2 n/a n/a 7 8

automatically

The total time includes the time to understand the
instructions for modi�cation (which is is comparable

for all subjects in the same scenario), and the time be-
tween the �rst change to the knowledge base and the
completion of the transaction (i.e., to leave the knowl-
edge base in a coherent state and succesfully computing
a given set of sample problems). Subjects using ETM
took consistently less time, the contrast is greater for
the time to complete the transaction and in the more
complex scenario (PAE). Notice that the subjects were
familiar with EXPECT but not with ETM, which may
be a factor in why some of them completed the modi-
�cations using EXPECT in times comparable to ETM
in the simpler scenario. We expect the di�erence to be
much larger in our future tests with users who are not
familiar with EXPECT. The table also shows the num-
ber of changes done automatically by the KA Scripts,
which may be one of the reasons why the subjects took
less time with ETM.
It is interesting to note that in the longer scenario

(PAE) both subjects using EXPECT had forgotten
to perform part of the modi�cation speci�ed in the
instructions. To realize that that was the cause for
the wrong results that they got during the execution
of the sampe problems, and to revert that situation
(which sometimes requiered to redo part of the mod-
i�cation in a di�erent way) took them considerable
time. One possible explanation of why subjects us-
ing ETM did not have that problem is that ETM gives
step by step guidance for modifying problem-solving
methods, and relives users from keeping track of the
pending changes, permiting the users to concentrate
in the problem-solvingmethod being modi�ed. In con-
trast with our experience with previous versions, users
were able to understand what the KA Scripts suggested
and to follow the guidance that they provided in com-
pleting modi�cations. Although ETM allows users to
abandon the KA Scripts and use EXPECT, none of
our subjects decided to pursue this option.

Conclusions

We have described an approach to supporting users in
modifying knowledge bases. The approach is based on
identifying typical sequences of changes to a knowledge
base and representing strategies (scripts) for carrying
them out. These scripts allow the knowledge acquisi-
tion tool to understand the consequences of each indi-
vidual change made by the user and provide support in
completing the overall modi�cation so that the knowl-
edge base is not left in an unusable state.
One important extension to our approach is to in-

corporate scripts to help the user in starting modi�ca-
tions, not just completing them. In fact, three of our
four subjects made the comment that they would like
help in �guring out where to start the modi�cation.
These initiation scripts are similar to the program-
ming cliches in the KBEmacs program editor (Waters
1985), which represent generic algorithmic fragments
that programmers use in writing code.
Our initial implementation and preliminary evalua-



tions with users show promising results. We expect
the bene�ts of KA Scripts to be greater for domain
experts with no previous exposure to EXPECT or the
domain implementation. Our user interface needs to
be extended to provide visualizations and abstractions
of the knowledge base as well as on-line help.
There are several features that make the EXPECT

architecture suitable for supporting KA Scripts. EX-
PECT has explicit representations of all the knowledge
in a knowledge-based system. These representations
can be examined by ETM to understand which pieces
of knowledge need to be changed. Other frameworks
lack this kind of explicit representation, either because
they use �rst-order logic representations that blur im-
portant distinctions among di�erent types of knowl-
edge, or because they hard-code some parts of the
knowledge-based system reasoning, such as problem-
solving knowledge (Eriksson et al. 1995). Another
advantage of EXPECT is that it can analyze how
generic goals (representative of the types of tasks that
the knowledge-based system is built for) are achieved.
Other frameworks lack this capacity, fording them to
examine execution traces of speci�c problems that the
system was unable to resolve, where relevant informa-
tion for debugging the knowledge base is confounded
in the details about that particular execution. Finally,
EXPECT is built to handle errors in the knowledge
base. When it encounters an error during problem
solving, it generates a detailed description of how the
error came about. It also has strategies for recover-
ing from the error by using other information from the
current knowledge base. Most systems are not built to
handle faulty knowledge bases, often reporting errors
that are both hard to understand and hard to �x. We
believe that these architectural features are not only
necessary to support KA Scripts, but also useful to ad-
dress adequately the maintainance of knowledge-based
systems.

Acknowledgements

We would like to thank Kevin Knight, Eric Melz, and
Andre Valente for their valuable comments on this pa-
per. Our special thanks to the past and present mem-
bers of the EXPECT research group that patiently
participated in our experiments, making possible the
evaluation of ETM reported here. We gratefully ac-
knowledge the support of DARPA with the contract
DABT63-95-C-0059 as part of the DARPA/RomeLab-
oratory Planning Initiative.

References

Eriksson, H.; Shahar, Y.; Tu, S. W.; Puerta, A. R.;
and Musen, M. A. 1995. Task modeling with
reusable problem-solving methods. Arti�cial Intel-
ligence 79(1995):293{326.

Gil, Y., and Melz, E. 1996. Explicit representations
of problem-solving strategies to support knowledge

acquisition. In Proceedings of the Thirteenth National
Conference on Arti�cial Intelligence.

Gil, Y., and Paris, C. 1994. Towards method-
independent knowledge acquisition. Knowledge ac-
quisition 6(2):163{178.

Gil, Y. 1994. Knowledge re�nement in a reective
architecture. In Proceedings of the Twelfth National
Conference on Arti�cial Intelligence.

Langley, P., and Simon, H. A. 1995. Applications
of machine learning and rule induction. Communica-
tions of the ACM 38(11).

MacGregor, R. 1991. The evolving technology
of classi�cation-based knowledge representation sys-
tems. In Sowa, J., ed., Principles of Semantic Net-
works: Explorations in the Representation of Knowl-
edge. San Mateo, CA: Morgan Kaufmann.

Marcus, S., and McDermott, J. 1989. SALT: A knowl-
edge acquisition language for propose-and-revise sys-
tems. Arti�cial Intelligence, 39(1):1{37.

Murray, K. S. 1996. KI: A tool for knowledge in-
tegration. In Proceedings of the Thirteenth National
Conference on Arti�cial Intelligence.

Ourston, D., and Mooney, R. J. 1994. Theory re-
�nement combining analytical and empirical meth-
ods. Arti�cial Intelligence 66:311{344.

Pazzani, M. J., and Brunk, C. A. 1991. Detecting
and correcting errors in rule-based expert systems: an
integration of empirical and explanation-based learn-
ing. Knowledge acquisition 3(2):157{173.

Puerta, A. R.; Egar, J. W.; Tu, S. W.; and
Musen, M. A. 1992. A multiple-method knowledge-
acquisition shell for the automatic generation of
knowledge-acquisition tools. Knowledge Acquisition
4(2):171{196.

Runkel, J. T., and Birmingham, W. P. 1993. Knowl-
edge acquisition in the small: Building knowledge-
acquisition tools from pieces. Knowledge acquisition
5(2):221{243.

Swartout, B., and Gil, Y. 1995. EXPECT: Ex-
plicit Representations for Flexible Acquisition. In
Proceedings of the Ninth Knowledge-Acquisition for
Knowledge-Based Systems Workshop.

Waters, R. 1985. The programmer`s apprentice: A
session with kbemacs. IEEE Transactions on Soft-
ware Engineering 11(11):1296{1320.


